

ПРОЕКТ СТРОИТЕЛЬСТВА МГЭС НА УЧАСТКЕ, РАСПОЛОЖЕННОМ НА РЕКЕ АК-БУУРА

Наименование предприятия:

ОАО «Чакан ГЭС»

Краткое описание проекта:

Проектом предполагается строительство гидроэлектростанции (далее – ГЭС) потенциальной мощностью 20 МВт, на базе Папанского водохранилища, расположеного в среднем течении реки Ак-Буура и предназначеного для повышения водообеспеченности земель Ошской области и водоснабжения г. Ош. Емкость водохранилища 260 млн. м³. Створный участок плотины расположен в узком Катарском ущелье, прорезанной рекой в горном массиве.

Потенциальная среднегодовая выработка электроэнергии составляет 93 млн кВт/ч.

Описание инициатора проекта:

ОАО «Чакан ГЭС» — это отечественная компания, 100% акций которых принадлежит ОАО «Национальная энергетическая холдинговая компания». Основными видами деятельности является эксплуатация, проектирование и строительство малых ГЭС на территории Кыргызской Республики, а также производство, передача и реализация электроэнергии.

ОАО «Чакан ГЭС» реализует электроэнергию на внутренний рынок, и имеет 28 потребителей электроэнергии. При этом 80-90% электроэнергии реализуется ОАО «Северэлектро». Среднегодовые объемы производства электроэнергии ОАО «Чакан ГЭС» составляют 162,0 млн. кВтч.

Стоимость проекта - \$26 000 000

 Общая смета строительства, с учетом поставки и шефмонтажа электротехнического оборудования – \$26 000 000

Сумма инвестиций - \$26 000 000 Период окупаемости - 7,93 лет

ОПИСАНИЕ

ПРОЕКТА

Проектом предполагается строительство малой гидроэлектростанции (далее - МГЭС) потенциальной мощностью 20 МВт, на базе Папанского водохранилища, расположеного в среднем течении реки Ак-Буура и предназначеного для повышения водообеспеченности земель Ошской области и водоснабжения г. Ош. Емкость водохранилища 260 млн. м³. Створный участок плотины расположен в узком Катарском ущелье, прорезанной рекой в горном массиве.

В состав основных сооружений водохранилища входят: плотина высотой 120 метров, возведенная взрывным способом и туннельный водовыпуск, совмещенный со строительным туннелем и поверхностным паводковым водосбросом.

В нижней части входного оголовка водовыпуска находятся два отверстия, которые затем объединяются в общем туннеле с размерами в свету 5*6 метров. Длина туннеля 501,5 метров. Предусмотрена металлическая облицовка порога туннеля по длине примерно 128 метров. Камеры аварийно-ремонтных и основных плоских затворов располагаются в бетонной части сооружения. Маневрирование затворами производится гидроподъемниками, расположенными в верхней части входного оголовка с помощью дожимных штанг.

В 2012-2013 году компанией Mercados - Energy Markets International (Испания) совместно с ОАО «НИИЭС» (Россия) подготовлен отчет «Кыргызская Республика: Стратегическое планирование развития малой и средней гидроэнергетики. Фаза I обоснование выбора 4 пилотных проектов», содержащий рекомендации и технико-экономическое обоснование строительства новых малых и средних ГЭС на ирригационных сооружениях (Тортгульская, Папанская, Кировская, Орто-Токойская и Кугартская ГЭС).

Площадь участка для отведения составляет 6,5 га.

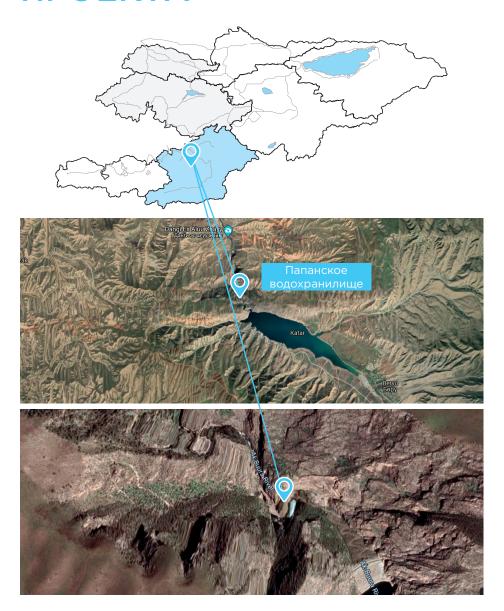
Среднегодовой водоток Папанского водохранилища составил 21,3 м³/с.

Рядом с водохранилищем имеется подстанция 35/6кВ «Папан» мощностью 2,5 МВА, которая запитана по сетям 35кВ (АС-70мм-необходимо менять провод) к подстанции 110/35/10кВ ОШ-6. Длинна линии примерно 30 километров. ВЛ-35 также имеет отпайку к подстанции 35/10кВ «Катта-Сай» мощностью 4МВА.

Рядом с водохранилищем на расстоянии не более 10к м от подстанции имеется населенный пункт Папан, население не более 4000 жителей.

Потенциальная годовая выработка электроэнергии (тыс. кВт/ч) на Папанской ГЭС нижеследующая

Январь	Февраль	Март	Апрель	Май	Июнь	Июль	Август	Сентябрь	Октябрь	Ноябрь	Декабрь
2970.0	3140.0	4000.0	11900.0	19360.0	20 000.0	20 000.0	20 000.0	11300.0	8980.0	0.0089	2990.0


Потенциальная выработка, тыс. кВт/ч

Потенциальная среднегодовая выработка электроэнергии составляет **93 млн кВт/ч.**

ГЕОГРАФИЧЕСКОЕ РАСПОЛОЖЕНИЕ

ПРОЕКТА

ОПИСАНИЕ ИНИЦИАТОРА

ПРОЕКТА

ОАО «Чакан ГЭС» — это отечественная компания, 100% акций которых принадлежит ОАО «Национальная энергетическая холдинговая компания». Основными видами деятельности является эксплуатация, проектирование и строительство малых ГЭС на территории Кыргызской Республики, а также производство, передача и реализация электроэнергии.

Открытое Акционерное Общество «Чакан ГЭС» было создано 22 мая 2000 года, в целях эффективного использования ресурсов малых ГЭС Кыргызской Республики, на базе Каскада Аламединских ГЭС. В настоящее время общая установленная мощность станций ОАО «Чакан ГЭС» составляет 38,5 МВт, и состоит из двух производственных подразделений Каскад Аламединских ГЭС и Быстровская ГЭС.

- Каскад Аламединских ГЭС состоит из 8 малых гидроэлектростанций с установленной мощностью 29,78 МВт которые расположены на Западном БЧК, на окраинах города Бишкек.
- ✓ Быстровская ГЭС установленной мощностью 8,7 МВт, в мае 2009 года вошла в состав ОАО «Чакан ГЭС». Станция расположена в Кеминском районе, п Нур.

С августа 2016 года, ОАО «Чакан ГЭС» вошел в состав дочерних обществ ОАО «Национальная энергетическая холдинговая компания».

ОАО «Чакан ГЭС» реализует электроэнергию на внутренний рынок, и имеет 28 потребителей электроэнергии. При этом 80-90% электроэнергии реализуется ОАО «Северэлектро». Среднегодовые объемы производства электроэнергии ОАО «Чакан ГЭС» составляют 162.0 млн. кВтч.

УСТОЙЧИВЫЕ КОНКУРЕНТНЫЕ ПРЕИМУЩЕСТВА ПРЕДПРИЯТИЯ И ПРОЕКТА

- ✓ Близлежащая подстанция Папан 35/6кВ. Рядом с водохранилищем имеется подстанция 35/6кВ «Папан» мощностью 2,5 МВА, которая запитана по сетям 35кВ (АС-70мм-необходимо менять провод) к подстанции 110/35/10кВ ОШ-6. Длинна линии примерно 30 километров. ВЛ-35 также имеет отпайку к подстанции 35/10кВ «Катта-Сай» мощностью 4МВА.
- У Эффективное месторасположение объекта. Место расположения ГЭС выбрано с учетом возможности создать наиболее эффективный напор и удобства организации строительных работ.
- ✓ Высокий гидроэнергетический потенциал. Гидроэнергетический потенциал республики составляет 142 млрд кВтч. В рейтинге СНГ Кыргызская Республика занимает 3-е место по потенциалу ГЭС и мГЭС.
- ✓ Повышенные тарифы на выкуп электроэнергии. Согласно закону КР «О возобновляемых источниках энергии» тарифы на энергию устанавливаются на уровне максимального, установленного по республике, тарифа с применением повышающих коэффициентов в зависимости от вида ВИЭ, где для малых ГЭС коэффициент составляет 1,3.
- ✓ Низкий процент освоения потенциала. По состоянию на 2021 год, процент освоения составляет 10% от общего гидроэнергетического потенциала республики.
- ✓ Высокая мощность каскадов ГЭС. По подсчетам экспертов суммарная мощность перспективных каскадов ГЭС составляет 5600 млрд кВтч.
- СASA-1000. Кыргызская Республика является страной-участницей проекта CASA-1000, цель проекта создание линии электропередачи, связывающей Центральную и Южную Азию.

ПРОГНОЗНЫЕ ФИНАНСОВЫЕ

ПОКАЗАТЕЛИ ПРОЕКТА

Предварительная сумма инвестиций для реализации этого проекта составит 26 000 000 долларов США. Расчеты произведены по тарифу на электроэнергию, установленную Среднесрочной тарифной политикой Кыргызской Республики на электрическую и тепловую энергию на 2021-2025 годы, утвержденной постановлением Кабинета министров Кыргызской Республики от 30 сентября 2021 года №192 и стимулирующему коэффициенту на выработку электроэнергию использующих энергию воды согласно Закону Кыргызской Республики «О возобновляемых источниках энергии» от 31 декабря 2008 года №283.

При данном сценарии, тариф продажи выработанной ГЭС электроэнергии составит 3,276 сом* или 3,86 цента США* (по курсу 1 USD = 84,79 KGS).

Выработка 93 млн кВт/ч						 *С учетом законодательства КР, проект имеет возможность получения льготного тарифа с применением ко- 							
	Инвестиции	26 млн до	олл. Cl	ШΑ		эффі	ициента	1.3 для ма	алых ГЭС	: на срок	не боле	е 10 лет.	
			-1	2	3	4	5	6	7	8	9	10	

											10
Выработка	млн кВтч	93,0	93,0	93,0	93,0	93,0	93,0	93,0	93,0	93,0	93,0
Тариф	долл. США/ кВтч	0.0386	0.0386	0.0386	0.0386	0.0386	0.0386	0.0386	0.0386	0.0386	0.0386
Выручка	тыс. долл. США	3 589,8	3 589,8	3 589,8	3 589,8	3 589,8	3 589,8	3 589,8	3 589,8	3 589,8	3 589,8
EBITDA	тыс. долл. США	3 277,8	3 277,8	3 277,8	3 277,8	3 277,8	3 277,8	3 277,8	3 277,8	3 277,8	3 277,8

✓ IRR на на конец 10 года составит 4,45%

Итого:

 Период окупаемости проекта составляет 7.93 лет, дисконтированный период окупаемости составляет 9.78 лет

ИСТОЧНИКИ ФИНАНСИРОВАНИЯ И ИСПОЛЬЗОВАНИЕ СРЕДСТВ

Источник финансирования	Сумма, долл. США
Финансовый инвестор	26 000 000
Итого:	26 000 000
Использование средств	Сумма, долл. США
Общая смета строительства МГЭС, с учетом поставки и шеф монтажа электротехнического оборудования	26 000 000

26 000 000

КРАТКИЙ ОБЗОР ЭНЕРГЕТИЧЕСКОЙ ОТРАСЛИ

Кыргызстан - страна, богатая водными ресурсами. На её территории сосредоточено огромное количество водноэнергетических ресурсов, суммарный технический потенциал всех водотоков республики оценен в 16580 МВт по мощности или 142,5 млрд. кВтч, по выработке электроэнергии. По этому показателю Кыргызстан занимает второе место в Средней Азии, уступая лишь Таджикистану.

Гидроэнергетика и вся энергетическая отрасль Кыргызстана являются одним из главных направлений развития государства. Данный потенциал у республики огромен, но в полной мере он пока не раскрыт. На текущий момент используется 10% от возможного потенциала.

- Ежегодно в Кыргызстане вырабатывается почти 15 млрд кВт/ч электричества.
- В стране действуют 7 крупных гидроэлектростанций: Токтогульская, Курпсайская, Шамалдысайская, Таш-Кумырская, Уч-Курганская, Камбаратинская-2 и Ат-Башинская.
- ✓ Имеются 2 тепловые электроцентрали в Бишкеке и Оше.
- Общая протяженность линий электропередачи в стране 64 700 км.

98% всего электричества в Кыргызстане производит ОАО «Электрические станции». Компании принадлежит 7 ГЭС и 2 ТЭЦ. Самое крупное предприятие компании - Токтогульская ГЭС, она производит 30% всего электричества в стране. Ее водохранилище вмещает 19 млрд кубометров воды, что позволяет регулировать потоки реки Нарын и влиять на распространение воды всего бассейна реки Сырдарья. Мощность ГЭС - 1200 МВт. Высота плотины Токтогульского водохранилища - 215 м, ширина - 292 м.

На севере страны крупнейшим производителем электроэнергии является Бишкекская ТЭЦ, которая покрывает около 15% потребности страны. Ее мощность - 812 МВт.

Кыргызстан обладает значительным потенциалом в отрасли малой гидроэнергетики. Этот ресурс может быть использован для энергоснабжения как областных центров, так и отдаленных районов и сел. При этом МГЭС, в отличие от крупных, не требуют масштабного строительства, огромных капиталовложений и затопления территорий под

Проект CASA-1000 по прокладке линий электропередачи из Таджикистана и Киргизии в Пакистан и Афганистан

водохранилища. Современные технологии позволяют организовать подачу электроэнергии потребителю в кратчайшие сроки.

Также в целях поэтапного развития и эффективного использования возобновляемых источников энергии, усовершенствования энергетической структуры и диверсификации энергоресурсов, в Кыргызской Республике принят Закон «О возобновляемых источниках энергии», в соответствии с которым производители электрической и тепловой энергии с использованием возобновляемых источников энергии (далее - «ВИЭ») имеют, но не ограничиваются следующими преференциями: налоговые и таможенные льготы, гарантированный выкуп производимой электроэнергии, применение льготного тарифа на период окупаемости (маскимальный применимый тариф на электроэнергию с использованием коэффициента 1,3).

Среди многих других положительных факторов, присущих гидроэнергетике, малая гидроэнергетика является: экологически безопасным, дешевым и быстро организуемым, легко эксплуатируемым и стабильным источником получения электроэнергии. Как при строительстве, так и при эксплуатации малых гидроэлектростанций, не наносится никакого вреда окружающей среде.

Суммарный валовый гидроэнергетический потенциал малых рек и водотоков составляет порядка 950-1500 МВт по мощности и 5-8 млрд. кВтч по выработке электроэнергии, из которых республика использует около 2,5%.

Среди наиболее ярких примеров активного освоения потенциала малой гидроэнергетики можно отметить Китай, где насчитывается 80 тыс. МГЭС. В США имеется около 10 тыс. действующих малых ГЭС суммарной мощностью более 7 млн. кВт. Доля малой энергетики достигает 50% от всей гидроэнергетики США. В Японии действует 1350 малых ГЭС, суммарной мощностью 7 млн. кВт.

Интенсивно идет строительство и ввод мощностей в странах Западной Европы, в Австрии 950, в Италии 1200, в Норвегии 500, в Финляндии 170, во Франции 1100, в ФРТ 800 в Швеции 1200 МГЭС. Швейцария и Австрия - лидеры по эффективному использованию МГЭС поддержания стабильности энергетического баланса. В этих странах на долю МГЭС приходится 8,3% и 10% всей вырабатываемой энергии.

ОАО «Чакан ГЭС» - оператор малых ГЭС вырабатывает всего 1% электричества в стране.

Также Кыргызстан вместе с Таджикистаном уже с 2023 года должен приступить к экспорту электричества в Пакистан и Афганистан в рамках проекта CASA-1000. Электроэнергию планируется продавать в летнее время. За 15 лет реализации проекта Кыргызстан планирует экспортировать электроэнергию на сумму более 1,5 млрд долларов США.

ПРЕДЛОЖЕНИЕ ДЛЯ ИНВЕСТОРА

ЮРИДИЧЕСКИЙ МЕХАНИЗМ
ВИД ФИНАНСИРОВАНИЯ
СУММА
СРОК ФИНАНСИРОВАНИЯ
КОЛ-ВО ТРАНШЕЙ
ОБЕСПЕЧЕНИЕ

- Открытое акционерное общество
- ✓ BOT/BOOT/BOMT
- ✓ 26 000 000 долларов США
- ✓ До 10 лет
- Поэтапное финансирование строительства малой гидроэлектростанции
- По договоренности сторон

